ISAS seminar 2011/4/27

The current status of the analysis of the Jovian infrared auroral data and the development of the near-infrared echelle spectrometer

Planetary Atmosphere Physics Lab. Dept. Geophys. Tohoku Univ.

D2 Takeru UNO

the dynamical and electromagnetic coupling between the Magnetosphere, Ionosphere, and Thermosphere (MIT coupling)

- The electric field originates from the Jovian rapid rotation and dynamics of the magnetospheric plasma cause Joule heating and ion drift in the thermosphere.
- The penetrating electrons cause auroras

Introduction: thermosphere and aurora

Fig. Jovian thermospheric structure and auroral emission (Grodent et al., 2001)

Thermosphere

This thermospheric region emits the infrared aurora in 2-4 microns from H2 (neutral) and H3+ (plasma). This region is the key region for the MIT coupling, because the large electric conductivity.

The remote sensing of the aurora is the best way to investigate this region.

H2 (neutral) emission reflect the atmospheric temperature caused by e- precipitation and Joule heating.

H3+ (plasma) directly reflect the precipitation and atmospheric temperature.

H2 and H3+ emissions seem to show the same morphology...

Subaru

Observations in last year table. Observation status							
date	2010/9/16	6, 18, 25	10/12				
Instrument	IRTF/CS	SHELL	Subaru/IRCS				
Diameter	3 r	n	8 m				
Target lines	H ₂ S ₁ (1) 2.122 μm	H ₃ ⁺ Q(1,0⁻) 3.953 µm	H ₂ & H ₃ + 2 μm				
Integration times	5 min.×6 (total 2h)	1 min.×10 (total 0.5h)	6 min × 14 step (total 2h)				
Field of View	0.5 " ×	30 "	0.14" × 5"				
spectral resolution	43,0	00	20,000				
Objectioves	H_2 , H_3^+ Inten	sity、velocity	H ₂ 、H ₃ + Intensity、 Temperature				
We proposed the measurement of the distributions of brightness, temperature, and line-of-sight velocity of Jovian H2 and H3+ to reach the morphological difference.							

Analysis

Definition of the Center position

• Fitting of the Minnaert function

Development

Scientific Targets and Priority

Table. Scientific targets and the success level of our spectrometer

Success Lv.	target	Intensity [W/m²/str]	Velocity	Integration time	Obs. sequence
Minimum	Jovian H ₃ ⁺ 3.9µm intensity	5x10⁻ ⁶	few km/s	2-3 min/1 shot	1 map/day, continue for several weeks
Nominal	Jovian H ₃ ⁺ 3.9µm velocity	5x10⁻ ⁶	few km/s	2-3 min/1 shot	1 map/day, continue for several weeks
Full	Jovian H ₂ 2.1µm intensity	5x10 ⁻⁷	-	5 min/1 shot x 6	After H ₃ ⁺ observation, 1 slit position
	Venus 1.27µm airglow	~1x10 ⁻⁵	-	1 min/1 shot	In the daytime
	Venus 2.3µm CO,CO2	~1x10⁻⁵	-	1 min/1 shot	In the daytime
Extra	Jovian H ₂ 2.1µm velocity	5x10 ⁻⁷	100-300 m/s	5 min/1 shot x 6	Before or after H_3^+

We are developing the echelle spectrometer, which is optimized for observation of Jovian aurora in 1-4 um.

Fig. Optical Design of our spectrometer

This spectrometer has camera mode.

15

END

