# Development of an Electron Low Energy Spectrometer for SCOPE

## Yuu Tominaga

Dept. of Earth and Planetary Science, Tokyo Univ.

# The low energy particle experiment



10 eV ~ 20 keV



V:voltage of the sensor E:energy of the detected particles

We can measure C(E)

The number of
particles detected within
a sampling time

Field of view • • polar , azimuth

Calculate distribution functions and velocity moments (n,V,T) of plasma using C(E)

$$F(\vec{v}) = \frac{m}{v^2} \frac{C(E)}{\varepsilon g E \Delta t} \dots (1)$$

ε • detection efficiency
g • geometric factor
Δt • sampling time
m • mass of electrons

 $n = \iiint F(\vec{v}) d\vec{v}$  $\vec{P} = \iiint \vec{nvv} F(\vec{v}) d\vec{v}$ ...(2)

# Design and characteristic of the analyzer



•Three nested
hemispherical deflectors
→measure two different
energies simultaneously
•Small enough to set on the
SCOPE spacecraft

measure 32 steps of energies from 10 eV to 22.5 keV

Δt(0.5 msec) × 16 = 8 msec



•8 sets of sensors (16 sensors)
→ secure 4-pi str field of view simultaneously
•8(spin) × 16(channel) = 128 windows



8 field of views along channel direction

16 field of views along spin direction



| characteristics                          | inner     | outer     |
|------------------------------------------|-----------|-----------|
| Geometrical factor<br>(cm^-2 str^-1)     | 7.5*10^-3 | 1.0*10^-2 |
| Energy resolution $\Delta$ E/E           | 0.23      | 0.17      |
| Angular resolution $\Delta \alpha$ (deg) | 16        | 11.5      |
| sampling time (msec)                     | 0.5       |           |
| time resolution (msec)                   | 8         |           |

The purpose of this study is ... verify that these characteristics are appropriate for measuring and calculating velocity moments of plasma

#### 2. Method

# Calculate f(v) and velocity moments

1: Assume velocity distribution function

 Maxwellian velocity distribution Density(n) Bulk velocity(Vb) •Temperature (Te)



Wolfgang Baumijohann, Basic Space Plasma

| Plasma sheet           | Lobe                   | Solar wind            | Physics ,P6                                    |
|------------------------|------------------------|-----------------------|------------------------------------------------|
| ne = 5.0e-01 (/<br>cc) | ne = 5.0e-02 (/<br>cc) | ne = $7.0 (/cc)$      |                                                |
| Te = 5.0e-01<br>(keV)  | Te = 5.0e-02<br>(keV)  | Te = 5.0e-02<br>(keV) | Table1:                                        |
| Vb = 100.0 (km/<br>s)  | Vb = 100.0(km/<br>s)   | Vb = 450.0 (km/<br>s) | Typical velocity<br>moments of space<br>plasma |

#### 2. Method



see whether 1 < C(E) < 500</li>
compare assumed f(v) and calculated f(v)

#### 2. Method

## 3: Calculate velocity moments



 $n = \sum \sum \sum \frac{C(E)}{g \varepsilon \Delta t} \frac{1}{v} \cos(\theta) \frac{\Delta E}{E} \Delta \theta \Delta \varphi \qquad \dots (6)$ Vx, Vy, VzTx, Ty, Tz

Compare calculated (n,V,T) with assumed (n,V,T)
Estimate the effect of Deviations of the detection efficiency(ε)



 $C(E) = g\varepsilon Ef(E)\Delta t \propto \varepsilon$ 

There is a small deviation of  $\varepsilon$  between 16 sensors.

Calculation of velocity moments will be affected

## **Plasma sheet**

Counts





| 3. | . Results and Discussions  |        |            |                                     |                            |
|----|----------------------------|--------|------------|-------------------------------------|----------------------------|
|    | Calculate velocity moments |        |            | Table2:<br>Calculation results      |                            |
|    |                            |        | Assumption | Calculation ( $\varepsilon = 0.6$ ) | Calculation/<br>Assumption |
|    | ne (,                      | /cc)   | 0.5        | 4.137e-01                           | 0.827                      |
|    | Te_x                       | (keV)  | 0.5        | 4.994e-01                           | 0.999                      |
|    | Te_y                       | (keV)  | 0.5        | 4.991e-01                           | 0.998                      |
|    | Te_z                       | (keV)  | 0.5        | 5.092e-01                           | 1.018                      |
|    | Vb_x                       | (km/s) | 100.0      | 9.689e+01                           | 0.969                      |
|    | Vb_y                       | (km/s) | 0          | -5.192e-03                          |                            |
|    | Vb_z                       | (km/s) | 0          | -2.472e-10                          |                            |
|    | Errors of calculation      |        |            |                                     |                            |
|    |                            |        |            |                                     |                            |

Ie •• ~ 1 % Vb •• ~ 3 % ne •• ~ 20 %

Casting errorsAbsence of data under10 eV

3. Results and Discussions

## Density correction

•Cut off the counts of low energy  $\rightarrow$  reject the effect of casting errors •Fit a line to a set of (E,log10f(v)) and estimate f(v) of low energy  $\rightarrow f_e(v)$ 





Effect of the deviation of the detection effeciency



Given that each sensors has its own εi

 $\mathcal{E}_{i} = 0.6 - D_{i}$ ...(8)  $0 < D_{i} < D_{\max}$  $i = 1 \sim 16$ 

Calculate velocity moments and see how the deviation affects



ne, Te - calc error will be under 5 % if the deviation of ε is under 10 %
Vb - calc error will be much greater than ne and Te

Severe calibration of ε is necessary for estimating the accurate value of Vb.

## Lobe

Counts



Sampling time should be 5 msec

## Velocity distribution



deviations from assumption at small velocities are smaller than that of plasma sheet

 $\Delta t$  is 10 times larger  $\rightarrow$ The effect of  $\Delta C$  will be 1/10

## Calculate velocity moments

## Table 4: Calculation results

|             | Assumption | Calculation ( $\epsilon = 0.6$ ) | Calculation/<br>Assumption |
|-------------|------------|----------------------------------|----------------------------|
| ne (/cc)    | 0.05       | 3.868e-02                        | 0.774                      |
| Te_x (keV)  | 0.05       | 5.320e-02                        | 1.064                      |
| Te_y (keV)  | 0.05       | 5.304e-02                        | 1.061                      |
| Te_z (keV)  | 0.05       | 5.410e-02                        | 1.082                      |
| Vb_x (km/s) | 100.0      | 1.037e+05                        | 1.037                      |
| Vb_y (km/s) | 0          | -5.556e-03                       |                            |
| Vb_z (km/s) | 0          | 3.767e-10                        |                            |

**Errors of calculation** Te •• ~ 6 % Vb •• ~ 3 % ne •• ~ 25 %

Casting errorsAbsence of data under 10 eV

Effect of the deviation of the detection effeciency εi



Te - · calc error will be over 5 % if the deviation of ε is under 20 %
-ne - · calc error will be under 10 % if the deviation of ε is under 5 %
•Vb - · calc error will be much greater than ne and Te

( Density correction : Cut off C(E) lower than 30 eV )



## 4. Conclusions and Future works

# Conclusion

|                       | Plasma sheet | Lobe |                  |
|-----------------------|--------------|------|------------------|
| ne (calc/assumption)  | 0.82         | 0.77 |                  |
| Vb (calc/assumption)  | 0.96         | 1.03 |                  |
| Te (calc/assumption)  | 0.99         | 1.06 |                  |
| *ne (calc/assumption) | 0.95         | 0.87 |                  |
| *Vb (calc/assumption) | 2.0          | 1.5  | Table 5          |
| *Te (calc/assumption) | 1.02         | 1.08 | Calculation resu |

sampling time : 0.5 msec (plasma sheet) , 5 msec (lobe)

\* : Given that the deviations of  $\epsilon$  are 10 %

The precision of calculating Vb and Te is < 10 %.</li>
(We can calculate ne if we cut off C(E) of low energies.)
The deviations of ε severely affect calculations of Vb.
Another observation mode is necessary for measuring solar wind regions.

4. Conclusions and Future works

## Future works

Solar wind observation modeSpacecraft potential correction

•Calculate velocity moments from f(v) which is calculated by numerical simulations.

## References

•Y. Saito, S. Sasaki, M. Fujimoto, K. Maezawa, I. Shinohara, Y. Tsuda, and H. Ko-jima. High time resolution electron measurement by Fast Electron energy Spectrum Analyzer (FESA). In M. Hirahara, Y. Miyoshi, N. Terada, T. Mukai, & I. Shinohara, editor, American Institute of Physics Conference Series, Vol. 1144 of American Institute of Physics Conference Series, pp. 53–58, June 2009.

•Wolfgang Baumjohann. Basic Space Plasma Physics. Imperial College Press

•Mukai, T., Machida, S., Saito, Y., Hirakawa, M., Terasawa, T., Kaya, N., Obara, T., Ejiri, M., and Nishida, A.: 1994, The Low-Energy Particle (LEP) Experiment Onboard the Geotail Satellite, *J. Geomag. Geoelect.* **46**, **669**.

•Y. Saito, and T. Mukai, The Method of Calculating Absolutely Calibrated Ion and Electron Velocity Moments, ISAS RESEARCH NOTE

## GEOTAIL LEPとの時間分解能の比較

GEOTAIL LEP •• 12 sec SCOPE •• 8 msec

2×16×40 = 1280 <sup>2エネルギー同</sup> 時測定

> スピンによらない サンプリング

サンプリングタイム 20 msec・・GEOTAIL 0.5 msec・・SCOPE