Exploration of Planetary Interior

Development of Penetrator System

Description of LUNAR-A Spacecraft

- Spin-Stabilized Cylindrical Shape
- 2.2 m max. in diameter × 1.7 m in height Weight : wet mass 540kg (Fuel 190 kg)
- including two penetrator modules (45kg × 2) ★ LUNAR-A Mission Objectives
 - Technological demonstration of penetrator system and Network Science in Planetary Exploration
- Investigation of lunar internal structure by seismometry and heat-flow experiment on unmanned mission
- Better understanding of bulk composition and early thermal state to clarify the origin and evolution of the Moon

Scientific Objectives

Seismometry

- Determine the meteoroid impact flux on the farside of the Moon
- · Determine the seismic activity of the farside of the Moon · Determine the seismic structure of the deep mantle
- · Determine the size and physical properties of the core

Heat-Flow Experiment

- · Determine the heat flow values at two different sites on the Moon · Determine the average heat flow values of whole Moon
- · Determine the bulk abundance of the refractory elements

Lunar Penetrator Module

r: 1.0~1.2 Hz nt : 10.8 Volt / kine

Heat-Flow Probes

Result of Last Impact Test

Description of Last QT Level Impact Test

est field to ave pact conditions : 330 m/sec, 8.7 deg attack an ct Test Facility 23

Recent Progress

- (1) LUNAR-A mission has been suspended and the launch date is not determined since 2004, because of the following two reasons. her Spacecraft : Recall and replacement of some thruster bulbs used for Reaction Control System.
- etrator : A malfunction observed in the qualification level test (QT) performed in November, 2003
- LUNAR-A project had been reviewed by both the internal and external review boards from the viewpoint of technology and management in 2004. (2)
 - Suspension of development and safekeeping under purged N₂ gas
 - Further improvement and some modifications are required
 - We have put on a three-year program into effort to solve the penetrator tech

Future Prospect

- (1) There is no redundancy for mission success because of only two penetrators, higher reliability and robustness are required for JAXA
- More than ten years have passed since the mother S/C was manufactured, the deterioration in the quality of the instruments onboard the mother S/C because of the long-term storage. (2)
 - ★ Utilization of Penetrator System on Follow-on missions ⇒ Luna-Glob mission in collaboration with Russia ★ Application and Modification of Payload Instruments ⇒ Post-SELENE mission in JAXA and other lander missi

Seismic Observation Test

Technical Issues

stness against ESD, and addition of back curred in the QT level experiment in 2003. Outline of Mission Schedule FY. 2005 FY. 2007 f recovery on of '03 QT test

Luna-Glob Mission

- ★ Description of Luna-Glob Satellite
- 3-axis stabilized satellite, 2.3 ton in total weight
- Single launch by Soyuz-Fregat2 rocket in 2012 (TBD) 1 Main S/C, 1 Lander, and 4 LUNAR-A penetrators Geophysical Network Observation by 5 points (possibly, including seismometer onboard Lander)

